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What are early-warning signals?
EWS are time-changing statistics which behave in a predictable

way on the approach towards a critical transition. Critical Slow-
ing Down phenomenon manifests itself in increased autocorre-
lation, variance and magnitude of fluctuations as a sys-
tem approaches a transition, due to the system’s slow recovery
from perturbations as its dominant eigenvalue approaches zero1.

EWS are updated in real-time, can be automated and are com-
putationally efficient.

This is key in infectious disease modelling to assess when the basic
reproduction number (R0) has reduced below the threshold of one2.

What is the time-of-detection?
Time-of-detection is the first time when there is significant evi-

dence of an impeding critical transition.
(a) Is the time of first detection prior to the time the bifurcation oc-

curs?
(a)How long is the lead-time period between detecting and reaching

the bifurcation?
(a)What is the TPR and FPR of this prediction?
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Validation Methods
We validate an empirical study which offered lead time predictions

using EWS: normalised composite3, and compared the perfor-
mance to a method in change-point analysis from statistics called
Quickest Detection4.

For each method we present:

STEP 1 (timeseries)
A demonstration for simulated data which is:
•Going through bifurcation (disease elimination) in green. We
want to trigger a bifurcation

•At steady state in blue. We do not want to trigger a bifurcation.
The first “time-of-detection” is highlighted with a red star. The
bifurcation point is the vertical dotted line.

STEP 2 (heatmaps)
An extension of each method by varying the number of consecutive
points required to exceed the threshold for a detection to be trig-
gered.

From 500 simulations undergoing a bifurcation (disease elimina-
tion),

TPR = bifurcating simulations which detect a bifurcation
500 .

From 500 simulations at steady state,

FPR = steady state simulations which detect a bifurcation
500

We plot the power metric
Power Metric = TPR − FPR , Power Metric ∈ [−1, 1],

A score close to 1 (coloured red) indicates a high sensitivity and
high specificity. A score close to −1 (coloured blue) indicates a
low sensitivity and low specificity.

STEP 3 (boxplots)
For the best EWS and number of consecutive points (chosen from
STEP 2 heatmap), we calculate the time-of-detection for each sim-
ulation.
Each boxplot is the distribution of time-of-detection from each sim-

ulation (each simulation data point is shown with grey dots), where:
•Green Boxplots: simulations going through a bifurcation. Want
to return time-of-detection for all 500 simulations (high number
of dots). TPR given in legend.

•Blue Boxplots: simulations at steady state. DO NOT want to
return time-of-detection for any simulations (low number of dots).
FPR1 given in legend.

•Purple Boxplots: simulations where incidence is reducing but
the system does not undergo a bifurcation. DO NOT want to
return time-of-detection for any simulations (low number of dots).
FPR2 given in legend.

Normalised Composite Method3

The normalised composite of multiple EWS is calculated. If the
composite exceeds the long-run mean plus two standard-deviations, a
detection is triggered.

STEP 1: Demonstration using the composition of variance and coef-
ficient of variation.
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CV + Va, 6 consecutive values

true positives rate: 0.992
false positives 1 rate: 0.0
false positives 2 rate: 0.894

Conclusions:
•CV + Va is highly specific and sensitive for all consecutive values
• Indicators more specific when at least 5 consecutive points are consid-
ered

•AC, De, Va (and their combinations) are poor EWS
•High false detection rate on “changing-not-bifurcating” data (purple)

Quickest Detection Method4

The Quickest Detection method from change-point analysis employs
two probability densities describing the data pre- vs post-bifurcation. A
detection is triggered when the Shiryaev–Roberts statistic (based of the
likelihood ratio) exceeds a threshold A.

STEP 1: Demonstration using xi ∈ N (0, 30), i ∈ [0, τ ] and xi ∈
N (0, 10), i ∈ [τ + 1,T ], with log(A) = T .
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Quickest Detection, 3 consecutive values

true positives rate: 0.908
false positives 1 rate: 0.132
false positives 2 rate: 0.508

Conclusions:
•Requires the user to define the probability distributions and threshold
• Small to no lead-time
•Best method for data which is “changing-not-bifurcating” (purple)


